2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Jianjie Lin, Markus Rickert, Alois Knoll
Robotics,
Artificial Intelligence and Real-time
Systems
Department of Informatics, Technische Universität München
We propose a surface-to-surface (S2S) point registration algorithm by exploiting the Gaussian Process Implicit Surfaces for partially overlapping 3D surfaces to estimate the 6D pose transformation. Unlike traditional approaches, that separate the corresponding search and update steps in the inner loop, we formulate the point registration as a nonlinear non- constraints optimization problem which does not explicitly use any corresponding points between two point sets. According to the implicit function theorem, we form one point set as a Gaussian Process Implicit Surfaces utilizing the signed distance function, which implicitly creates three manifolds. Points on the same manifold share the same function value, indicated as {𝟏, 𝟎, −𝟏}. The problem is thus converted into finding a rigid transformation that minimizes the inherent function value. This can be solved by using a Gauss-Newton (GN) or Levenberg- Marquardt (LM) solver. In the case of a partially overlapping 3D surface, the Fast Point Feature Histogram (FPFH) algorithm is applied to both point sets and a Principal Component Anal- ysis (PCA) is performed on the result. Based on this, the initial transformation can then be computed. We conduct experiments on multiple point sets to evaluate the effectiveness of our proposed approach against existing state-of-the-art methods.
Benchmark results for all algorithms on four different point sets with three levels of Gaussian noise and three different overlap factors. The best RMSE value ε for each configuration is highlighted in bold
noise=0.00000 | noise=0.00025 | noise=0.00050 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.00 | 0.85 | 0.65 | 1.00 | 0.85 | 0.65 | 1.00 | 0.85 | 0.65 | |||||||||||
ε | t | ε | t | ε | t | ε | t | ε | t | ε | t | ε | t | ε | t | ε | t | ||
Bunny | PCL-ICP | 0.081 | 0.55 | 0.090 | 0.39 | 0.067 | 0.33 | 0.046 | 0.42 | 0.082 | 0.64 | 0.046 | 0.31 | 0.069 | 0.38 | 0.107 | 0.62 | 0.073 | 0.31 |
GoICP | 0.115 | 20.29 | 0.110 | 20.06 | 0.097 | 19.98 | 0.050 | 20.15 | 0.020 | 20.06 | 0.060 | 20.17 | 0.090 | 20.08 | 0.100 | 20.07 | 0.050 | 20.13 | |
GoICPT | 0.100 | 21.49 | 0.110 | 21.47 | 0.100 | 21.36 | 0.110 | 21.51 | 0.100 | 21.72 | 0.100 | 21.43 | 0.100 | 21.43 | 0.110 | 21.68 | 0.100 | 21.43 | |
SAC-IA-ICP | 0.001 | 6.14 | 0.002 | 5.63 | 0.010 | 7.12 | 0.001 | 6.63 | 0.002 | 6.05 | 0.010 | 8.24 | 0.001 | 7.02 | 0.003 | 6.41 | 0.011 | 7.92 | |
Gl.RANSAC | 0.001 | 1.599 | 0.005 | 1.678 | 0.005 | 2.312 | 0.001 | 1.699 | 0.005 | 1.839 | 0.005 | 1.948 | 0.001 | 1.710 | 0.005 | 1.872 | 0.005 | 2.348 | |
FGR | 0.017 | 0.400 | 0.009 | 0.370 | 0.017 | 0.322 | 0.004 | 0.385 | 0.007 | 0.373 | 0.020 | 0.348 | 0.004 | 0.412 | 0.007 | 0.388 | 0.015 | 0.348 | |
Ours | 0.001 | 0.568 | 0.001 | 0.486 | 0.001 | 0.465 | 0.001 | 0.531 | 0.001 | 0.609 | 0.002 | 0.507 | 0.001 | 0.466 | 0.002 | 0.561 | 0.002 | 0.690 | |
Suzanne | PCL-ICP | 0.134 | 0.810 | 0.108 | 0.814 | 0.116 | 0.656 | 0.049 | 0.587 | 0.127 | 1.264 | 0.095 | 0.650 | 0.131 | 0.934 | 0.115 | 0.619 | 0.106 | 0.902 |
GoICP | 0.134 | 0.810 | 0.108 | 0.814 | 0.116 | 0.656 | 0.049 | 0.587 | 0.127 | 1.264 | 0.095 | 0.650 | 0.131 | 0.934 | 0.115 | 0.619 | 0.106 | 0.902 | |
GoICPT | 0.092 | 23.150 | 0.059 | 21.502 | 0.084 | 21.532 | 0.079 | 21.584 | 0.071 | 21.679 | 0.097 | 21.655 | 0.045 | 21.517 | 0.091 | 21.569 | 0.062 | 21.473 | |
SAC-IA-ICP | 0.092 | 23.150 | 0.059 | 21.502 | 0.084 | 21.532 | 0.079 | 21.584 | 0.071 | 21.679 | 0.097 | 21.655 | 0.045 | 21.517 | 0.091 | 21.569 | 0.062 | 21.473 | |
Gl.RANSAC | 0.014 | 1.663 | 0.018 | 1.724 | 0.040 | 2.002 | 0.016 | 1.829 | 0.011 | 1.808 | 0.039 | 2.277 | 0.013 | 1.865 | 0.025 | 1.912 | 0.022 | 2.711 | |
FGR | 0.049 | 0.583 | 0.039 | 0.574 | 0.060 | 0.512 | 0.070 | 0.628 | 0.049 | 0.602 | 0.061 | 0.532 | 0.046 | 0.697 | 0.071 | 0.641 | 0.052 | 0.572 | |
Ours | 0.049 | 0.583 | 0.039 | 0.574 | 0.060 | 0.512 | 0.070 | 0.628 | 0.049 | 0.602 | 0.061 | 0.532 | 0.046 | 0.697 | 0.071 | 0.641 | 0.052 | 0.572 | |
Dragon | PCL-ICP | 0.087 | 0.487 | 0.100 | 0.317 | 0.079 | 0.445 | 0.090 | 0.229 | 0.065 | 0.346 | 0.096 | 0.352 | 0.071 | 0.502 | 0.082 | 0.465 | 0.101 | 0.382 |
GoICP | 0.017 | 21.581 | 0.022 | 21.736 | 0.018 | 21.416 | 0.034 | 21.490 | 0.035 | 21.697 | 0.021 | 21.497 | 0.018 | 21.474 | 0.053 | 21.467 | 0.033 | 21.562 | |
GoICPT | 0.022 | 21.388 | 0.014 | 21.370 | 0.021 | 20.017 | 0.011 | 19.945 | 0.009 | 19.976 | 0.084 | 20.054 | 0.013 | 20.136 | 0.044 | 20.168 | 0.017 | 20.170 | |
SAC-IA-ICP | 0.001 | 5.927 | 0.003 | 5.279 | 0.009 | 4.795 | 0.001 | 6.018 | 0.003 | 5.433 | 0.009 | 4.852 | 0.001 | 6.478 | 0.004 | 5.816 | 0.009 | 5.215 | |
Gl.RANSAC | 0.001 | 2.078 | 0.005 | 2.555 | 0.005 | 2.867 | 0.001 | 2.274 | 0.005 | 2.468 | 0.004 | 2.832 | 0.001 | 2.582 | 0.005 | 2.493 | 0.005 | 2.812 | |
FGR | 0.001 | 2.078 | 0.005 | 2.555 | 0.005 | 2.867 | 0.001 | 2.274 | 0.005 | 2.468 | 0.004 | 2.832 | 0.001 | 2.582 | 0.005 | 2.493 | 0.005 | 2.812 | |
Ours | 0.012 | 0.501 | 0.022 | 0.455 | 0.024 | 0.391 | 0.012 | 0.478 | 0.016 | 0.444 | 0.017 | 0.382 | 0.021 | 0.499 | 0.015 | 0.472 | 0.013 | 0.395 | |
Buddha | PCL-ICP | 0.002 | 0.705 | 0.002 | 0.950 | 0.002 | 1.017 | 0.002 | 0.848 | 0.002 | 0.920 | 0.003 | 1.016 | 0.002 | 0.740 | 0.002 | 0.962 | 0.003 | 0.872 |
GoICP | 0.043 | 21.539 | 0.032 | 21.401 | 0.085 | 21.309 | 0.075 | 21.380 | 0.050 | 21.295 | 0.052 | 21.341 | 0.051 | 21.368 | 0.067 | 21.474 | 0.012 | 21.390 | |
GoICPT | 0.013 | 20.168 | 0.025 | 20.133 | 0.028 | 20.171 | 0.016 | 20.167 | 0.031 | 20.191 | 0.022 | 20.115 | 0.023 | 19.983 | 0.031 | 19.910 | 0.020 | 19.965 | |
SAC-IA-ICP | 0.001 | 5.534 | 0.007 | 5.216 | 0.009 | 6.265 | 0.001 | 6.179 | 0.014 | 7.343 | 0.017 | 7.428 | 0.001 | 6.700 | 0.011 | 7.548 | 0.015 | 6.169 | |
Gl.RANSAC | 0.001 | 5.534 | 0.007 | 5.216 | 0.009 | 6.265 | 0.001 | 6.179 | 0.014 | 7.343 | 0.017 | 7.428 | 0.001 | 6.700 | 0.011 | 7.548 | 0.015 | 6.169 | |
FGR | 0.022 | 0.393 | 0.022 | 0.363 | 0.019 | 0.327 | 0.016 | 0.397 | 0.019 | 0.380 | 0.015 | 0.323 | 0.024 | 0.421 | 0.022 | 0.393 | 0.021 | 0.338 | |
Ours | 0.003 | 0.989 | 0.002 | 0.768 | 0.002 | 0.844 | 0.001 | 0.581 | 0.003 | 0.709 | 0.002 | 0.830 | 0.002 | 0.681 | 0.002 | 0.739 | 0.003 | 1.165 |
For more detailed information please have a look at our IROS paper. The reference is
Jianjie Lin, Markus Rickert, Alois Knoll. 6D Pose Estimation for Flexible Production with Small Lot Sizes based on CAD Models using Gaussian Process Implicit Surfaces, In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, Oct. 2020.
@INPROCEEDINGS{lingpis2020,
author={Lin, Jianjie and Rickert, Markus and Knoll, Alois},
booktitle={2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
title={6D Pose Estimation for Flexible Production with Small Lot Sizes based on CAD Models using Gaussian Process Implicit Surfaces},
year={2020},
volume={},
number={},
pages={10572-10579},
doi={10.1109/IROS45743.2020.9341189}}